

UNLV
Computer Science Department

CS 135 Lab Manual

prepared by

Lee Misch

revised July 2014

CS 135 Lab Manual

Content Page

Introduction……………………………………………………………………… 3
CS Computer Accounts…………………………………………………………. 3
TBE B361 Computer Basics……………………………………………………. 3
 Choosing an Operating System…………………………………………... 3
 Logging In to Windows or Linux (CentOS)……………………………… 4
 Logging Out of Windows or Linux (CentOS)……………………………. 4
 Opening a Terminal Window in Linux (CentOS)....................................... 4
 Changing CS Passwords………………………………………………….. 4
Linux Primer……………………………………………………………………. 5
 Conventions………………………………………………………………. 5
 Basic File Management Commands……………………………………… 5
 Using Directories…………………………………………………………. 9
 Controlling Processes…………………………………………………….. 11
 Other Useful Information………………………………………………… 13
Using the Emacs text editor... 15
Compiling and Executing a C++ Program……………………………………… 16
Using make to Compile a C++ Program ... 16
Using SSH to Remotely Access Computer Science Servers…………………… 17
Separate Compilation of C++ Programs with Makefiles……………………….. 19

Quick Linux Command Lookup
Command Page
cat – display file 7
cd – change directory 10
cp - copy 7
lpr - print 8
ls – display directory contents 6
man – online manual 5
mkdir – create a directory 10
more – display file 7
mv – rename file 8
pwd – working path directory 10
rm – delete file 8
rmdir – delete directory 11

Please send any corrections and/or suggested additional topics to lee.misch@unlv.edu.

CS Lab Manual 07/2014 2

mailto:lee.misch@unlv.edu

Introduction
The following manual is an updated version of several documents prepared by University and
Community College System of Nevada System Computing Services, including "Managing Files
Under Unix", "Using Directories in Unix", and "Running Processes Under Unix". Additional
information has been adapted from the CS Lab website (http://tux.cs.unlv.edu) and handouts
generated for CS 135/202 classes. Users of this manual should regularly check the CS lab
website for updates.

CS Computer Accounts

1. Most CS computer accounts are currently being created from class enrollment lists. Students

will receive an email sent to their Rebelmail address with their login name and password.

 An online account application is available at http://tux.cs.unlv.edu/AccountApplication/.

 It is strongly recommended that you change the password for your account. See instructions

for doing so on page 4 of this manual.

2. Your CS account will allow you to log into the computers in the Computer Science computer

lab (TBE B361) and to access the CS remote servers (bobby.cs.unlv.edu, cardiac.cs.unlv.edu
and java.cs.unlv.edu).

3. CS computer accounts do not expire.

4. If you already have a CS account, but cannot remember your password, you can request a

password reset online at http://tux.cs.unlv.edu/AccountApplication/. When your request is
received and your account verified, an email will be sent to your Rebelmail address with a
new password (usually within 24 hours of the request).

5. If you already have a CS account, but cannot remember your login or have any other

problems with regard to this account, contact the Computer Science Systems Administrator,
John Kowalski, in TBE B378E. Bring a picture ID.

TBE B361 Computer Basics

The TBE B361 computer lab was created and is maintained for the use of undergraduate students
taking computer science courses. The computers in the lab are dual boot machines, meaning they
can run either Windows 7 or Linux (CentOS).

Choosing an Operating System

If it is not already on, turn on the computer by pressing the power button.

1. A menu will be displayed on the screen offering the option of booting Windows 7 or

CentOS 6 (Linux).

2. Use the Up and Down arrow keys to select the operating system you want. Press Enter.

CS Lab Manual 07/2014 3

http://tux.cs.unlv.edu/
http://tux.cs.unlv.edu/AccountApplication/
http://tux.cs.unlv.edu/AccountApplication/

Logging In

 After selecting the operating system:

 To Windows:
 1. Press Ctrl-Alt-Del
 2. Enter your CS login (as Username) and CS password
 3. Click the OK arrow (or press Enter)

 To Linux:
 1. If your login name is displayed in the list

 select it
 enter your CS password, press Enter or select LogIn

 2. If your login name is not displayed, scroll down to Other and select it.
 enter your CS login, press Enter
 enter your CS password, press Enter

Logging Out

 From Windows:
 Select Log Off or Shutdown from the Windows Start menu.

 From Linux:
 Select Log Out or Shutdown from the Start menu and follow the instructions.

Opening a Terminal Window in Linux
1. Bring up the Start menu (icon in lower left hand corner).
2. Move to System Tools and select Terminal from the menu.

Changing CS Passwords
 Select a password that conforms to the following rules

 minimum length of 8 characters
 must be a MIX of upper and lower case letters
 at least one special character must be included (#s are considered special)
 DO NOT use blanks, your login name, or dictionary words

 1. Log into Windows 7
 2. Press Ctrl-Alt-Del to bring up the menu with the Change Password option
 3. You will be required to enter your new password twice before the change is complete.
OR
 1. Log into Linux and open a terminal window.
 2. At the prompt, type the command: passwd (press Enter)
 3. When prompted,

 enter your current CS password
 enter your new password (you will be required to type it twice before the change is

complete – your password will not appear on the screen)

CS Lab Manual 07/2014 4

Linux Primer

Conventions

A system prompt is a sequence of symbol(s) that are displayed by the operating system
indicating that the system is ready to accept input.

A command is a directive to the computer to perform some task.

An argument is any string of characters added to a command to modify its results. A file name
is one kind of argument. Individual letters preceded by a hyphen are another type.

 Example:
 [lee@bobby ~]$ cat -n testdata

 In the given example, [lee@bobby ~]$ is the system prompt, cat is the command,

testdata and –n are arguments.

Dummy words are words/numbers that should be replaced by the user's own information. They
are often used when presenting a general example of a command. Dummy words will be
presented in italic type in examples.

 Example:
 [lee@bobby ~]$ more filename

In all examples, text entered by the user will be displayed in boldface type.

When entering a command, the user must always press the Enter key to complete the entry.

Basic File Management Commands

A useful Linux command reference guide can be found at
http://tux.cs.unlv.edu/refs/linux_commands.html.

man command – on-line manual pages

The man command provides the user with access to an on-line manual for Linux commands.

 Example:
 [lee@bobby ~]$ man command

CS Lab Manual 07/2014 5

http://tux.cs.unlv.edu/refs/linux_commands.html

ls command – list

The ls command displays an alphabetical list of all the files/directories in your current
directory.

 Example: [lee@bobby ~]$ ls

Optionally, the user may specify a directory name:

 [lee@bobby ~]$ ls directoryname

This command will display an alphabetical list of all the files/directories in the specified
directory.

 Sample command and output:
 [lee@bobby ~]$ ls cs135sum13
 a.out data07 hw07.cpp testdatadir

-l (long argument)
 The -l argument of the ls command lists the files in the specified directory in long

format. The long format displays the types of access, number of links, owner, size in
bytes, and time of last modification for each file.

 Sample command and output:
 [lee@bobby ~]$ ls -l cs135sum13
 total 36
 -rwx------ 1 lee csfac 19447 Jun 1 12:14 a.out
 -rw------- 1 lee csfac 14 May 31 12:58 data07
 -rw------- 1 lee csfac 2576 Jun 1 12:14 hw07.cpp
 drwx------ 2 lee csfac 4096 Jun 2 12:46 testdatadir

 The first column (the one containing 10 dashes and/or letters) indicates the type of

access, or what you and other users can do to the file or directory.

 The first character indicates whether the object is a file or a directory. A 'd' means

directory; a hyphen (-) means file.

 The next 3 characters refer to the owner's (user’s) permissions to read (r), write (w), and

execute (x) the file/directory. The r means that you can look at the file/directory. w means
that you can write to or save in the file/directory. If the x is present it means that the file
is executable or the directory can be searched. Generally, all the files/directories in your
account will have rw permissions. Only directories and executable files will have the x
permission set.

 The next 6 characters refer to permissions given to the 2 remaining levels of file/directory

ownership (group and other). Generally, these permissions should not be allowed (should
show a hyphen).

CS Lab Manual 07/2014 6

 The second column in the display shows the number of links to a file or directory.

 The third column shows the owner of the file/directory. If you are listing the files in your

home directory, your login should appear in this column. The fourth column shows your
group.

 The next 3 columns indicate the size of the file/directory in bytes, the date and time

(using a 24-hour clock) when the file or directory was last modified, and the name of the
file/directory, respectively.

cat command - concatenate

The cat (concatenate) command allows the user to display the entire contents of a text file on
the screen.

 Example:
 [lee@bobby ~]$ cat filename

more command

The more command allows the user to display the contents of a text file one screen (or page) at
a time.

 Example:
 [lee@bobby ~]$ more filename

The first page of the file will appear on the screen. To see one more line of the file, press the
Enter key. To see the next page of the file, press the space bar. If you do not want to see the
remainder of the file, quit the more command by entering the letter q.

cp command - copy

The cp (copy) command is used to copy the contents of one file to another file.

 Example:
 [lee@bobby ~]$ cp sourcefile destinationfile

This command will copy the contents of sourcefile into destinationfile. Both files will exist in the
current directory when the command is completed. NOTE: If a file with the name destinationfile
exists BEFORE the cp command is executed, the old destinationfile will be replaced by the
contents of sourcefile.

CS Lab Manual 07/2014 7

mv command - move

The mv (move) command is used to move the contents of one file to a new file (rename a file).
This command can also be used to change the name of a directory.

 Example:
 [lee@bobby ~]$ mv oldfile newfile

The name of oldfile is changed to newfile.

rm command - remove

The rm (remove) command is used to permanently delete a file from your account.

 Example:
 [lee@bobby ~]$ rm filename

The file called filename will be deleted from the current directory.

lpr command – line print

The lpr command is used to send a file to a printer.

 Example:
 [lee@bobby ~]$ lpr filename

The file called filename will be sent to the default printer for your computer.

 -P (printer argument)
 The -P argument of the lpr command allows you to specify the name of the printer to

which the file should be sent.

 Sample command:
 [lee@bobby ~]$ lpr -Pponderosa mydata

 This command will result in the file called mydata being sent to a printer called

ponderosa.

CS Lab Manual 07/2014 8

Using Directories

What is a directory?

A directory is a place to store files and other directories (like a Windows folder). Directories are
used to organize the content of your account.

A directory created inside another directory is called a subdirectory. Forward slashes are used to
separate subdirectory names (/cs135sum07/hw01/). A directory that contains a subdirectory is
called a parent directory. Subdirectories may, in turn, be parents to other directories. A parent
directory is symbolized by two periods (..).

Example of a directory structure:

cs135fa12 cs202fa12

hw02 hw01 lectures

lee

In the example above, lee is the parent directory of cs135fa12 and cs202fa12. hw01 and hw02
are subdirectories of cs135fa12. cs202fa12 is the parent of lectures.

Path Names

The root directory, designated by a forward slash (/), is the highest level in the system. Every
directory starts from the root. The full name of a file beginning with a forward slash is called the
absolute path name of the file. It specifies the location of the file starting with the root
directory. Each successive subdirectory in the path must be preceded by a slash.

You may create and access files in your home directory. Your home directory is the directory
created for your account. It is where you are placed when you log in to the computer. ~/ (tilde,
slash) can be used as a shortcut that stands for your home directory.

A relative path name does not begin with a slash. It tells the computer to look for the specified
file or directory relative to your current position in the directory structure.

CS Lab Manual 07/2014 9

Assume you are working in the lee directory in the sample directory structure shown above. The
following command uses a relative path to display the content of the hw02 directory.

 [lee@bobby ~]$ ls cs135fa12/hw02

If you were working in the cs135fa12 directory and wanted to display the contents of the
cs202fa12 directory (without changing directories), the command would be:

 [lee@bobby ~]$ ls ../cs202fa12

The .. refers to the parent directory of cs135fa12.

pwd command – print name of current/working directory

The pwd command displays the absolute path to your current directory.

For instance, if you were working in the hw01 directory in the sample directory structure and
invoked the pwd command, the response will be,

 [lee@bobby ~]$ pwd
 /lee/cs135fa12-/hw01

cd command – change directory

The cd command is used to change from one directory to another.

 Example:
 [lee@bobby ~]$ cd directorypath

This command changes the current working directory to the specified directory.

To return to your home directory, type: cd or cd ~

To move one directory up (to parent directory), type: cd ..

mkdir command – make a directory

The mkdir command is used to create a new directory. The specified directory will be created
as a subdirectory of your current working directory.

 Example:
 [lee@bobby: ~]$ mkdir dirname

CS Lab Manual 07/2014 10

rmdir command – remove a directory

The rmdir command is used to remove a directory. Before a directory can be deleted, it must
be empty (no files or subdirectories can be in the directory).

 Example:
 [lee@bobby: ~]$ rmdir dirname

Controlling Processes

The following information on canceling processes can also be found online at:
http://tux.cs.unlv.edu/processControl.html.

Canceling a Process

If a program is caught in an infinite loop or must be terminated early for some reason, Ctrl-C can
be used to terminate the process.

Sometimes a process may "run away" (not terminate properly). The following command checks
the processes that are currently running for a user with the login name janedoe.

Sample command and output:

 [lee@bobby ~]$ ps -ef | grep janedoe
 UID PID PPID C STIME TTY TIME CMD
 janedoe 2233 2231 0 16:57 ? 00:00:00 /usr/sbin/sshd
 janedoe 2234 2233 0 16:57 pts/0 00:00:00 -sh
 janedoe 2254 2234 0 16:57 pts/0 00:00:00 ps -ef
 janedoe 2255 2234 0 16:57 pts/0 00:00:00 grep janedo

The numbers in the PID column are the process identification numbers for the jobs. If you want
to terminate one of these jobs, use the kill command.

 Example:
 [lee@bobby ~]$ kill -9 PID

Replace PID with the actual process ID number for the job to be terminated.

 Example:
 [lee@bobby ~]$ kill -9 2233

This command will terminate the command "/user/sbin/sshd"

CS Lab Manual 07/2014 11

http://tux.cs.unlv.edu/processControl.html

Redirecting Input and Output

By default, the standard input device is the keyboard and the standard output device is the
screen (monitor). Linux allows the user to change the standard input and output destinations
through a process called redirection.

Output Redirection (>)

The greater than sign (>) is used to change the destination of standard output.

 Example:
 [lee@bobby ~]$ ls > dirlist

This command will place the output from the ls command into a file called "dirlist" rather than to
the screen. If the file "dirlist" existed prior to the command, its old content would have been
destroyed.

 Example:
 [lee@bobby ~]$./a.out > output

This command will send the results of executing the object file "a.out" to the file called "output".

Append Output Redirection (>>)

Two greater than signs (>>) allows you to add the output of a program or command to the end of
an existing file rather than destroying its contents.

 Example:
 [lee@bobby ~]$ cat feline >> canine

This command will add the contents of "feline" to the end of "canine".

Output Error Redirection (>&)

If you want to include any error messages that might appear along with the results of your
process, add an ampersand (&) after the greater than sign.

For example, to save the error messages from a g++ compile to a file called "errorlist" the
command would be

 [lee@bobby ~]$ g++ prog.cpp >& errorlist

CS Lab Manual 07/2014 12

Input Redirection (<)

The less than sign (<) is used to change the standard input device to a specified file.

 Example:
 [lee@bobby ~]$./a.out < inputfile

The command in the example runs the executable file "a.out" which will try to get its input from
the file "inputfile".

Input and output redirection can be used in the same command line.

 Example:
 [lee@bobby ~]$./a.out < testdata > myresults

Here the program stored in "a.out" is run, getting its input from "testdata" and writing its output
to "myresults.

Pipe Redirection (|)

The vertical line (|) is used to send, or pipe, the output from one command or program as input to
another command or program.

For example, the command

 [lee@bobby ~]$ ls | more

will cause the computer to list the files and directories in your current directory, one screen
(page) at a time.

Other Useful Information

Wildcard Characters

Wildcard characters can be used to get a quick list of files and directories with related spellings.
The two characters that act as abbreviations (wildcards) in names are the question mark (?) and
the asterisk (*).

A question mark in a name matches any single character. For example, if the command

 [lee@bobby: ~]$ ls testdata??

is typed, the computer will search for all names that begin with "testdata" and end with exactly 2
characters. So, objects with the names testdata10, testdataxy, and testdata.1 would be displayed,
but testdata1 and testdata004 would not.

 The asterisk matches zero or more characters. If the command

CS Lab Manual 07/2014 13

 [lee@bobby: ~]$ ls testdata*

is typed, any name that begins with "testdata" will be displayed.

Wildcard characters can be used in any part of a name (beginning, middle, or end).

Using Auto Completion in the bash Shell

The bash shell provides users with the command argument completion feature. This feature
allows a user to type in a partial command then press the Tab key to complete the command.
Completion works best when there is exactly one possible match for the partial command that is
typed in. If there are several possible matches, the command will be partially completed,
allowing the user to type in the remainder of the command.

For example, if you have files called assign1.cpp and hw1testdata in your current directory and
type in the following partial command and then press Tab:

 [lee@bobby: ~]$ more as

the bash shell will automatically supply the remaining characters in the file name (sign1.cpp).

On the other hand, if you have files called assign1.cpp and assign1testdata in your current
directory and type in the following partial command and then press Tab:

 [lee@bobby: ~]$ more as

The bash shell will only partially complete the command as shown below. It is up to the user to
supply more characters in the command, because there are 2 files that have the same set of
starting characters.

 [lee@bobby: ~]$ more assign1

If the user then added a ‘t’ to the command shown above and pressed Tab, the command would
be completed as:

 [lee@bobby: ~]$ more assign1testdata

Accessing Prior Commands Using Up and Down Arrow Keys

The bash shell has a built-in command history that “remembers” prior commands issued. When
editing, compiling, and running a program you will find yourself issuing the same commands
repeatedly. To avoid the necessity of retyping commands each time, press the Up Arrow key to
access a prior command. The Up and Down Arrow keys allow you to scroll through recently
issued commands.

CS Lab Manual 07/2014 14

Using the Emacs text editor

Emacs is a program designed to allow users to create, edit, and save text files. It can be used to
create your program and test data files. It is recommended that you go to the CS Computer Lab
website (tux.cs.unlv.edu) and print a copy of the GNU Emacs Reference Card
(http://tux.cs.unlv.edu/refs/emacsRCletter.pdf).

If you are logged into Linux in the CS lab (TBE B361), you will be able to use the GUI provided
for invoking commands. If you connect to a CS computer (bobby or cardiac) through SSH, you
will have to enter commands via the keyboard (do NOT use the mouse).

Once you have logged into your CS account, to invoke emacs and begin editing a C++ program
file, type the command:

 [lee@bobby: ~]$ emacs aprog.cpp

If a file called aprog.cpp does not exist in your current directory, it will be created. If the file
already exists, it will be opened for editing. NOTE: only include the .cpp extension for files that
will contain C++ programs. Choose file names that are meaningful.

Once aprog.cpp is open for editing, you may move the cursor (with the mouse if in a graphical
environment, with the cursor movement keys if using SSH) and begin typing. Refer to the Emacs
Reference Card for specific commands.

Emacs Commands: On the Emacs Reference Card, commands are designated as C-letter and M-
letter. The C stands for the Ctrl key. To enter a C-letter command, press the Ctrl key and the
specified letter at the same time. The M stands for the Meta key. In Linux the Meta key is Esc.
To enter an M-letter command, press the Esc key, release it, then press the specified letter.

For example:
 C-x C-w (Ctrl-x Ctrl-w) will allow you to write to a specific file
 M-d (Esc d) will delete the word following the cursor

When you connect to the system using SSH, you may find that the Backspace key does not work
as expected in Emacs (the Delete key sends a backspace). If so, you can change how the
keyboard handles input (see the section called Reconfiguring How the Terminal Handles
Keyboard Input, page 20).

Error Recovery. To abort a partially typed or executing command type: C-g.

Saving a file. To save your current file, the command is C-x C-s.

Exiting Emacs. To exit emacs, the command is C-x C-c.

NOTE: When you exit emacs, it will automatically save a copy of your old file (create a backup).
The old file will be called filename~

CS Lab Manual 07/2014 15

http://tux.cs.unlv.edu/refs/emacsRCletter.pdf

For example:
 [lee@bobby sampledir]$ ls
 aprog.cpp aprog.cpp~ testdata testdata~

aprog.cpp and testdata are the most recently edited versions of a C++ program file and a
data file, respectively. aprog.cpp~ and testdata~ are the files before the last edit/save
were performed.

Compiling and Executing a C++ Program

The C++ compiler that will be used when evaluating programming assignments in CS 135 is
called g++. In order for a file to be recognized by the g++ compiler as a C++ program file, the
name of the file name must have an appropriate extension. The extension to be used for program
file names in CS 135 is .cpp.

Command to invoke the g++ compiler:
 [lee@bobby: ~] g++ progname.cpp

If the program file contains no syntax errors, an executable file with the name a.out will be
created. This file should not be displayed as it is not in a human readable form. The program can
now be executed with the following command.

Command to run your program:
 [lee@bobby: ~] ./a.out

If the program contained syntax errors, a series of error messages will be displayed. You must
take note of the lines at which the errors occurred and then go back to the original program file
(the .cpp file) to locate and correct the mistakes. Save your updated file. Then, recompile.

Using make to Compile a C++ Program

An alternative method for compiling a C++ program is to use the Linux make utility. Using
make to compile a program stored in the file program.cpp, will automatically invoke the g++
compiler using the –o option and create an executable file called program.

The command to compile and create the executable is:
 [lee@bobby: ~] make program
Note that the .cpp extension should not be included in this command even though the name of
the program file is program.cpp.

In order to execute the program, type the command:
 [lee@bobby: ~] ./program

CS Lab Manual 07/2014 16

Using SSH to Remotely Access Computer Science Servers

bobby.cs.unlv.edu is a Linux general purpose login machine that is available to provide remote
access to CS computing resources for students currently enrolled in CS courses.
cardiac.cs.unlv.edu and java.cs.unlv.edu are also available for remote login. Network and OS
(CS 370) students MUST use cardiac for remote access. CS 135 students may log into any of
these 3 machines.

In order to access bobby, cardiac, or java from home you may use Secure Shell Client (SSH)
software.

SSH for Windows Users

 1. Go to the CS lab website (http://tux.cs.unlv.edu). Locate the User's Guide and then follow
the Remote Access link (http://tux.cs.unlv.edu/remote_access.html)

 2. Click on the Download Now link to download the free, non-commercial version of the
Secure Shell Client executable for Windows.

 3. Install it on your computer.
 4. Follow the instructions provided for using the SSH client.

 Creating a Profile

 SSH allows users to create profiles so that different servers can be quickly accessed.
1. Locate the Secure Shell Client icon on your desktop and double click it.
2. Click on the Profiles button (located on the upper left side of the window).
3. Select the Add Profile option. Type in a name for the server to be accessed. For example,

bobby.
4. Click the Profiles button again and select the Edit Profile option. Locate the server name

just added from the list of profiles on the left. Type in the complete server name
(bobby.cs.unlv.edu) as Host and your CS login name as User. Do not change any other
information. Click OK

 Reconfiguring How the Terminal Handles Keyboard Input

 By default, emacs uses the Delete key to send a backspace. To change this when using SSH:
 1. Run the SSH client.
 2. Click on the Profiles button and select Edit Profile.
 3. Select the server to be reconfigured.
 4. Select the Keyboard tab.
 5. Click the Backspace sends Delete option. (The Delete sends Backspace option can also

be checked.)
 6. Click OK.

CS Lab Manual 07/2014 17

http://tux.cs.unlv.edu/
http://tux.cs.unlv.edu/remote_access.html

SSH for Apple Users

 1. SSH is preinstalled on Apple computers.
 2. Use the Finder to locate and open the Applications window.
 3. Open the Utilities folder.
 4. Locate and open the Terminal window.
 5. To connect to a remote server the command is: ssh login@servername and press

Enter
 Example: ssh lee@bobby.cs.unlv.edu
 6. Follow the instructions displayed.
 7. Enter your CS password and press Enter.

Transferring Files from a Local Computer to/from a Remote Server

Windows – SSH Secure File Transfer Client

Installation of SSH includes the Secure File Transfer Client. This software allows you to copy
files back and forth between a local computer and a remote system using a graphical interface.
Once logged into a remote server,
 1. Pull down the Window menu and click New File Transfer. The left side of the window

will display your local computer directories/files. The content of the remote computer
will appear on the right.

 2. Drag and drop directories/files between the two systems.

Apple – Fugu

Fugu is a graphical front end to the command line Secure File Transfer application. Download
and install it if it is not already on your computer.
 1. Start Fugu.
 2. Go to the SFTP menu and Show SFTP Window.
 3. Enter the following:
 Connect to: name of server (ex: bobby.cs.unlv.edu)
 Username: your cs login name
 Port: 22
 Directory: leave blank
 4. Click Connect.
 5. Enter cs password and press Enter or click Authenticate.
 6. Drag and drop directories/files between the two systems.

CS Lab Manual 07/2014 18

Separate Compilation of C++ Programs with Makefiles**

In C++ (and many other programming languages) a project may be composed of more than one
source file. The Unix/Linux make utility provides an efficient method for specifying the
dependency relationships between a set of files. By creating a text file called Makefile (or
makefile), a programmer can list the commands required to form an executable file from the
source files. The make program will automatically keep track of source files that have changed
and recompile them if necessary.

The syntax for invoking make is

 [lee@bobby: ~]$ make prog

where prog is the name of the executable file you want to create. make will perform the
commands specified in Makefile (makefile).

A Makefile consists of a series of entries. Each entry consists of a line containing a colon (a
dependency line) and one or more command lines that start with a tab. The dependency line
begins with a target (usually a file to be created), followed by a colon, and then a list of the files
that are required to generate the target. The command line MUST be tab-indented and shows
how to build the target from the dependent files. A pound sign (#) is used to insert comments. All
text following the # on a line will be ignored by make.

For example here is a Makefile for a complex number program. We will assume you have 3 files:
testcomplex.cpp (a C++ client program designed to test a complex numbers package),
complexImp.cpp (a file that contains the functions implementing the complex number data type),
and complex.h (a header file that contains the type declarations and function prototypes for the
complex number data type).

testcomplex is dependent on testcomplex.o & complexImp.o
testcomplex : testcomplex.o complexImp.o
 g++ -o testcomplex testcomplex.o complexImp.o
testcomplex.o : testcomplex.cpp
 g++ -c testcomplex.cpp # -c - don't run the linker
complexImp.o : complexImp.cpp
 g++ -c complexImp.cpp
clean : # remove unnecessary object files
 rm *.o

To generate the executable file testcomplex, the command is:

 [lee@bobby: ~]$ make testcomplex

** DO NOT use separate program files for programming assignments given in CS 135.

CS Lab Manual 07/2014 19

CS Lab Manual 07/2014 20

What Happens

When the command: make testcomplex is invoked the default descriptor file (Makefile or
makefile) is used and the target "testcomplex" built. If the necessary object files do not already
exist, make will perform the commands specified in the descriptor file to generate the target. If
no target is specified in the call to make, the first target is made.

You may also select specific targets to be created. For example, if you wanted to create
complexImp.o, make could be invoked with: make complexImp.o.

Not all targets need be files. In the example above, clean is a phony target. The command: make
clean will cause all .o files in the current directory to be removed.

Additional information can be found in "An Introduction to the Unix Make Utility"
(http://capone.mtsu.edu/csdept/FacilitiesAndResources/make.htm).

g++ Compiler Options Used - from g++ man pages

 -c
Compile or assemble the source files, but do not link. The linking stage simply is not
done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix .c, .i, .s,
etc., with .o.

Unrecognized input files, not requiring compilation or assembly, are ignored.

 -o afile
Place output in the file called afile. This applies regardless of whatever sort of output is
being produced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

Since only one output file can be specified, it does not make sense to use -o when
compiling more than one input file, unless you are producing an executable file as output.

If -o is not specified, the default is to put an executable file in a.out, the object file for
source.suffix in source.o, its assembler file in source.s, a precompiled header file in
source.suffix.gch, and all preprocessed C source on standard output.

http://capone.mtsu.edu/csdept/FacilitiesAndResources/make.htm

